

II B. Tech I Semester Regular Examinations, Feb/March - 2022 SIGNALS AND SYSTEMS

(Com to ECE, EIE, ECT)

	Tim	e: 3 hours Max. Marks:	: 70
		Answer any FIVE Questions each Question from each unit All Questions carry Equal Marks	
1	a)	Prove the following: (i) The power of the energy signal is zero over infinite time. (ii) The power of the nergy signal is infinite time.	[7M]
	b)	(ii) The energy of the power signal is infinite over infinite time. Define the error function while approximating signals and hence derive the expression for condition for orthogonality between two waveforms $f_1(t)$ and $f_2(t)$	[7M]
		Or	
2	a)	Define a system. How are the systems classified? Define each one of them.	[7M]
	b)	Test the Causality and Stability of the following system (i) $y(n) = x(n) - x(-n-1) + x(n-1)$ (ii) $y(t) = 5 e^{-2t} u(t)$.	[7M]
3	a)	Derive the expression for Fourier Transform from Fourier Series.	[7M]
	b)	State and prove Differentiation and integration properties of Fourier Transform.	[7M]
		Or	
4	a)	State and prove Parseval's relation of Fourier Transform	[7M]
	b)	Derive the relation between trigonometric and exponential Fourier series coefficients.	[7M]
5	a)	What is an LTI system? Explain its properties. Derive an expression for the transfer function of an LTI system.	[7M]
	b)	Explain the concept of Paley-Wiener criterion for physical realizability using relevant expressions.	[7M]
		Or	
6	a)	Explain the filter characteristics of ideal LPF, HPF and BPF using their magritude and phase responses.	[7M]
	b)	Obtain conditions for the distortion less transmission through a system.	[7M]
7	a)	Find the Cross correlation between triangular and gate function as shown in below.	[7M]
		f(t) $f(t)$ $f(t)$	
		$\begin{array}{c c} & & \\ \hline \\ -1 & 0 & 1 \end{array} \qquad \begin{array}{c c} & & \\ \hline \\ -1 & 0 & 1 \end{array} \qquad \begin{array}{c c} & \\ \hline \\ -1 & 0 & 1 \end{array}$	
	b)	Derive the relationship between autocorrelation and energy spectral density of an energy signal.	[7M]
		Or	
8	a)	State and explain the sampling theorem for band pass signals.	[7M]

b) Explain the method of detection of periodic signals in the presence of noise by [7M] correlation.

|"|'||||"|"|||||

|"|'||||'|

(R20)

- 9 a) Find the Laplace Transform of the following: (i) $te^{-at}u(t)$ and (ii) $Cos(\omega_0 t)u(t)$ [7M]
 - b) What are the methods by which inverse z-transform can be found out? Explain any [7M] one method.
 - Or
- 10 a) State and prove time shifting and time convolution properties of z- transform. [7M]
 - b) Find out the Laplace transform of the signal shown in below figure. [7M]

